Transaction

fded2b045f811b6f1c06ea88581dfcd3c8d80c3e8b6af69a06d3d86a82d1e315
Timestamp (utc)
2024-05-22 07:00:11
Fee Paid
0.00000005 BSV
(
0.00330726 BSV
-
0.00330721 BSV
)
Fee Rate
2.352 sat/KB
Version
1
Confirmations
88,552
Size Stats
2,125 B

3 Outputs

Total Output:
0.00330721 BSV
  • jmetaB02d31d55e1f7cf2261e853d84b54c887db93b3faaf6884334a826495f759f956d8@104e04f4dc7bbb58b675a0be8ec8a2392cd828cadc0c1b85347e2d4ab003150erss.item metarss.netM½<item> <title>EGAN: Evolutional GAN for Ransomware Evasion</title> <link>https://arxiv.org/abs/2405.12266</link> <description>arXiv:2405.12266v1 Announce Type: new Abstract: Adversarial Training is a proven defense strategy against adversarial malware. However, generating adversarial malware samples for this type of training presents a challenge because the resulting adversarial malware needs to remain evasive and functional. This work proposes an attack framework, EGAN, to address this limitation. EGAN leverages an Evolution Strategy and Generative Adversarial Network to select a sequence of attack actions that can mutate a Ransomware file while preserving its original functionality. We tested this framework on popular AI-powered commercial antivirus systems listed on VirusTotal and demonstrated that our framework is capable of bypassing the majority of these systems. Moreover, we evaluated whether the EGAN attack framework can evade other commercial non-AI antivirus solutions. Our results indicate that the adversarial ransomware generated can increase the probability of evading some of them.</description> <guid isPermaLink="false">oai:arXiv.org:2405.12266v1</guid> <category>cs.CR</category> <category>cs.AI</category> <category>cs.LG</category> <arxiv:announce_type>new</arxiv:announce_type> <dc:rights>http://arxiv.org/licenses/nonexclusive-distrib/1.0/</dc:rights> <arxiv:DOI>10.1109/LCN58197.2023.10223320</arxiv:DOI> <arxiv:journal_reference>2023 IEEE 48th Conference on Local Computer Networks (LCN), Daytona Beach, FL, USA, 2023, pp. 1-9</arxiv:journal_reference> <dc:creator>Daniel Commey, Benjamin Appiah, Bill K. Frimpong, Isaac Osei, Ebenezer N. A. Hammond, Garth V. Crosby</dc:creator> </item>
    https://whatsonchain.com/tx/fded2b045f811b6f1c06ea88581dfcd3c8d80c3e8b6af69a06d3d86a82d1e315