Transaction

86748d234eebb459fefc7aebff5bde282c9cf07b6f70a8e00a2be8a5045f1dc1
Timestamp (utc)
2024-07-10 06:40:02
Fee Paid
0.00000004 BSV
(
0.00326077 BSV
-
0.00326073 BSV
)
Fee Rate
2.722 sat/KB
Version
1
Confirmations
84,870
Size Stats
1,469 B

3 Outputs

Total Output:
0.00326073 BSV
  • jmetaB03476977defa7fdef85dd7b96c4f1a669c2aa5d09badcf4e13978fdb3f2041c91a@f9851c2160f6d07cecd53064b44b75ae180251462771b97e11dbfad2c8f6cbe5rss.item metarss.netM.<item> <title>Efficient Batched CPU/GPU Implementation of Orthogonal Matching Pursuit for Python</title> <link>https://arxiv.org/abs/2407.06434</link> <description>arXiv:2407.06434v1 Announce Type: new Abstract: Finding the most sparse solution to the underdetermined system $\mathbf{y}=\mathbf{Ax}$, given a tolerance, is known to be NP-hard. A popular way to approximate a sparse solution is by using Greedy Pursuit algorithms, and Orthogonal Matching Pursuit (OMP) is one of the most widely used such solutions. For this paper, we implemented an efficient implementation of OMP that leverages Cholesky inverse properties as well as the power of Graphics Processing Units (GPUs) to deliver up to 200x speedup over the OMP implementation found in Scikit-Learn.</description> <guid isPermaLink="false">oai:arXiv.org:2407.06434v1</guid> <category>cs.DC</category> <arxiv:announce_type>new</arxiv:announce_type> <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights> <dc:creator>Ariel Lubonja, Sebastian Kazmarek Pr{\ae}sius, Trac Duy Tran</dc:creator> </item>
    https://whatsonchain.com/tx/86748d234eebb459fefc7aebff5bde282c9cf07b6f70a8e00a2be8a5045f1dc1