Transaction

84805ab7e8edcb5f67086f524b1c41c222db2d2ec00ff45ccb290903abfbbbe2
Timestamp (utc)
2024-07-04 06:40:31
Fee Paid
0.00000004 BSV
(
0.00326415 BSV
-
0.00326411 BSV
)
Fee Rate
2.346 sat/KB
Version
1
Confirmations
79,634
Size Stats
1,705 B

3 Outputs

Total Output:
0.00326411 BSV
  • jmetaB03e457110877850ca0bdfbf1bcaf24e0f70c6671ce1ec7429a13d8a85337d962ae@f9851c2160f6d07cecd53064b44b75ae180251462771b97e11dbfad2c8f6cbe5rss.item metarss.netM<item> <title>Collaborative Multi-Agent Heterogeneous Multi-Armed Bandits</title> <link>https://arxiv.org/abs/2305.18784</link> <description>arXiv:2305.18784v2 Announce Type: replace-cross Abstract: The study of collaborative multi-agent bandits has attracted significant attention recently. In light of this, we initiate the study of a new collaborative setting, consisting of $N$ agents such that each agent is learning one of $M$ stochastic multi-armed bandits to minimize their group cumulative regret. We develop decentralized algorithms which facilitate collaboration between the agents under two scenarios. We characterize the performance of these algorithms by deriving the per agent cumulative regret and group regret upper bounds. We also prove lower bounds for the group regret in this setting, which demonstrates the near-optimal behavior of the proposed algorithms.</description> <guid isPermaLink="false">oai:arXiv.org:2305.18784v2</guid> <category>cs.LG</category> <category>cs.DC</category> <category>cs.MA</category> <category>cs.SI</category> <category>stat.ML</category> <arxiv:announce_type>replace-cross</arxiv:announce_type> <dc:rights>http://creativecommons.org/licenses/by/4.0/</dc:rights> <dc:creator>Ronshee Chawla, Daniel Vial, Sanjay Shakkottai, R. Srikant</dc:creator> </item>
    https://whatsonchain.com/tx/84805ab7e8edcb5f67086f524b1c41c222db2d2ec00ff45ccb290903abfbbbe2